3 research outputs found

    Smart Vehicle to Grid Interface Project: Electromobility Management System Architecture and Field Test Results

    Full text link
    This paper presents and discusses the electromobility management system developed in the context of the SMARTV2G project, enabling the automatic control of plug-in electric vehicles' (PEVs') charging processes. The paper describes the architecture and the software/hardware components of the electromobility management system. The focus is put in particular on the implementation of a centralized demand side management control algorithm, which allows remote real time control of the charging stations in the field, according to preferences and constraints expressed by all the actors involved (in particular the distribution system operator and the PEV users). The results of the field tests are reported and discussed, highlighting critical issues raised from the field experience.Comment: To appear in IEEE International Electric Vehicle Conference (IEEE IEVC 2014

    Global Service Provider for Electric Vehicle Roaming

    No full text
    Due to the rising number of electromobility business entities (electric vehicle supply equipment operators and electromobility service providers), electric vehicle users are faced with a growing complexity in the use of public charging infrastructure, especially on a greater geographical scale. The development of electromobility calls for interoperability between all electromobility entities in order to enable roaming of EV users and remove the present barriers in EV users’ access to the public charging infrastructure. The paper describes the elementary processes related to EV charging (charging, reservation of charging spot, billing of charging service fee), the roles of electromobility entities in these processes, and their importance for the development of the roaming system. ETREL has developed an integrated roaming solution introducing a new entity, the global service provider, which mediates between the electromobility entities to enable roaming. The paper discusses the architecture and functionalities of the roaming scheme which comprises the global service provider. The paper also describes individual elements of the global service provider’s ICT system. The EV charging processes are explained again, this time in relation to roaming and with a focus on global service provider’s role in the processes. The final section of the paper proposes further steps to expand the roaming scheme functionalities and its geographical scope, where standardization or at least an agreement on ICT interfaces, application level protocols, and software services plays the key role
    corecore